Die wöchentlichen Übungsaufgaben können jeweils Donnerstag von dieser Seite heruntergeladen werden.

\(\newcommand {\mat}[4] {\left(\begin{smallmatrix}{#1}&{#2}\\{#3}&{#4}\end{smallmatrix}\right)}\) \(\newcommand {\C} {{\mathbb C}}\) \(\newcommand {\E} {{\mathbb E}}\) \(\newcommand {\F} {{\mathbb F}}\) \(\newcommand {\Q} {{\mathbb Q}}\) \(\newcommand {\R} {{\mathbb R}}\) \(\newcommand {\Z} {{\mathbb Z}}\) \(\newcommand {\sym}[1] {{\operatorname{#1}}}\) \(\newcommand {\SL}[1] {{\sym{SL}(2,#1)}}\) \(\newcommand {\leg}[2] {\left(\tfrac{#1}{#2}\right)}\)

Übungsaufgaben zur Elementaren Zahlentheorie 2013 - Blatt 1

Beweisen Sie, dass in einem angeordneten Ring stets folgende Aussagen gelten:

  1. Für jedes \(x\not=0\) ist \(x>0\) oder \(-x>0\).
  2. Ist \(x\not=0\), so gilt \(x^2 > 0\).
  3. Es ist \(1 > 0\).

Implementieren Sie das Sieb des Eratosthenes in Ihrem bevorzugten Computer-Algebra-System (CAS).

Zeichnen Sie mittels Ihres CAS den Graphen der Funktion \[ \pi(x)=\#\{p\le x\mid p\text{ Primzahl}\} \] über dem Intervall \(0\le x\le 10\,000\).