Übungsblatt 9

Kryptographie und Kodierungstheorie WiSe 16/17

Aufgabe 9.1. Für einen Körper F mit q Elementen sei $G_n^k(F)$ die Menge der kdimensionalen Unterräume von F^n . Zeigen Sie, dass $|G_n^k(F)|$ gleich dem $Gau\betaschen$ $Binomialkoeffizienten \binom{n}{k}_q$ ist, d.h.

$$|G_n^k(F)| = \binom{n}{k}_q = \frac{[q]_n}{[q]_k[q]_{n-k}},$$

wobei wir für ein beliebiges q und ein $n \in \mathbb{Z}_{\geq 0}$ die Schreibweise

$$[q]_n = (q^n - 1)(q^{n-1} - 1)\cdots(q - 1)$$

benutzen und per Konvention $[q]_0 = 1$ ist.

Hinweis: Die Kardinalität in der Frage ist gleich der Anzahl der Folgen von k linear unabhängigen Vektoren in F^n dividiert durch |GL(k, F)|. Als nächstes sollten Sie sich fragen, wie viele Vektoren ungleich 0 es in F^n gibt. Falls w ein solcher Vektor ist, wie viele Vektoren ungleich 0 gibt es in $F^n \setminus \{a \cdot w \mid a \in F\}$ usw.

Aufgabe 9.2. Gegeben sei der lineare Code $C \subseteq \mathbb{F}_2^6$ mit Erzeugermatrix

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

- a) Welche Abschätzungen für das Minimalgewicht von C liefert die Griesmer-Schranke?
- b) Man bestimme eine Kontrollmatrix H von C.
- c) Man bestimme aus der Kontrollmatrix das Minimalgewicht von C.

Aufgabe 9.3. Sei C ein $[n, k, d]_q$ -Code und sei $d \geq 2$. Zeige, dass es eine Stelle i gibt, so dass der Code C' ein $[n-1, k, d-1]_q$ -Code ist, welcher aus C durch streichen der i-ten Stelle in allen Codewörtern hervorgeht.

Aufgabe 9.4. Mit einer geeigneten Anpassung des Beweises der Gilbert-Varshamov-Schranke beweise man, dass für einen gegebenen Körper \mathbb{F}_q und gegebenem $d \leq n$ auch ein linearer $[n,k,d]_q$ -Code existiert, so dass $n-\log_q V_q(n,d-1) \leq k$ gilt.

Aufgabe 9.5. Wiederholung (Bonus)

Sei C ein (n,k)-Code über \mathbb{F}_q und sei D ein (n,l)-Code über demselben Körper.

- a) Für $E = \{(x, y) \mid x \in C, y \in D\}$ zeige man $d(E) = \min\{d(C), d(D)\}.$
- b) Für $E = \{(x, x + y) \mid x \in C, y \in D\}$ zeige man $d(E) = \min\{2d(C), d(D)\}$.
- c) Wie kann man in Teil b) aus Erzeugermatrizen für C und D eine Erzeugermatrix von E konstruieren?
- d) Wie kann man unter Ausnutzung von Teil b) rekursiv $(2^m, m+1)$ -Codes mit Minimalgewicht 2^{m-1} für $m \in \mathbb{Z}_{\geq 1}$ konstruieren?
- e) Man bestimme eine Erzeugermatrix eines (32,6)-Codes mit Minimalgewicht 16.